[GA4] BigQuery Export

Exporting Data from Google Analytics 4 Properties to BigQuery

Aktivera YouTube-textning om du vill se undertexter på ditt språk. Klicka på inställningsikonen Bild på ikon för inställningar i YouTube längst ned i videospelaren, välj Undertexter/textning och sedan ditt språk.


BigQuery är ett molndatalager som gör det möjligt att utföra avancerade sökningar i stora dataset.

Du kan exportera rådata om alla händelser från Google Analytics 4-egendomar (inklusive underordnade egendomar och egendomar för samlad visning) till BigQuery och sedan analysera informationen med SQL-liknande syntax. I BigQuery kan du exportera data till extern lagring eller importera extern data för att kunna kombinera den med Analytics-data.

När du exporterar data till BigQuery äger du den och kan använda BigQuery ACL för att hantera behörigheter för projekt och dataset.

Obs! Efter att du har exporterat data från Analytics till BigQuery kan du inte exportera den på nytt.

En fullständig export av data sker en gång om dagen. Data exporteras också kontinuerligt under dagen (se Löpande export nedan).

Du kan exportera till en kostnadsfri instans av BigQuery (BigQuery-sandlåda), men för exporter som gör att sandlådans gränser överskrids tas det ut en avgift.

Standardegendomar har en daglig gräns för BigQuery Export på en miljon händelser. Läs mer om andra gränser för BigQuery Export

Typer av BigQuery Export

Google Analytics erbjuder följande alternativ för BigQuery-export. De skiljer sig åt i fråga om vilken data som är tillgänglig för innevarande dag och bör väljas utifrån dina databehov och din budget:

Exporttyper Bäst när du behöver … Exportuppgifter Begränsningar Anmärkningar

Daglig export

(Standard, 360)

en fullständig uppsättning data för föregående dag och inte behöver data snabbt eller inte är 360-kund

Exporterar all rå händelsedata utan urvalen från föregående dag en gång om dagen

Specifik tid garanteras inte

Exporteras vanligtvis mitt på eftermiddagen i egendomens tidszon, men kan fördröjas till senare på dagen eller nästa dag

Senaste observerade klick, ingen modellering

Standardegendomar: upp till en miljon händelser per dag, med filtreringsalternativ för att hålla sig under gränsen

360-egendomar: upp till 20 miljarder händelser per dag

Viss data, till exempel data om användarattribution, kan fördröjas med upp till 24 timmar. Vi rekommenderar att du använder daglig export i stället för löpande export för data om användarattribution.

Uppdaterad daglig export

(360)

snabbare och mer fullständig data under hela dagen

Datan kommer vanligtvis in före kl. 05.00

Batchuppdateringar under dagen, vanligtvis inom 60 minuter

Samma schema som daglig export

Exporten startar baserat på egendomens tidszon

Senaste observerade klick, ingen modellering

Mycket snabbare än den dagliga exporten

Servicenivåavtal är inte tillgängligt för de få XL-egendomarna Endast tillgängligt för 360-egendomar i storlekarna Normal och Large.

streaming

(Standard, 360)

data i nära realtid (inom några minuter)

En realtidsexport av dagens data

Service efter bästa förmåga: körs utan servicenivåavtal gällande fullständighet och kan innehålla dataluckor

Inga volymbegränsningar Data om nya användare och nya sessionstrafikkällor utesluts från exporten

Obs! Varje export medför kostnader för lagring och bearbetning på BigQuery-sidan. Du drar på dig den extra BigQuery-kostnad på 0,05 dollar per gigabyte data för löpande exporter. En gigabyte motsvarar cirka 600 000 Google Analytics-händelser, även om siffran varierar beroende på händelsevolymen. Läs mer om BigQuery-priser.

Skillnader mellan Google Analytics-gränssnittet och BigQuery Export

BigQuery-händelseexporten ger åtkomst till rådata på händelse- och användarnivå, utom till de eventuella tillägg som Google Analytics gör till den data som finns i standardrapporter och utforskningar. Av denna anledning kan data från export av BigQuery-händelser skilja sig från data i Google Analytics-gränssnittet.

För att förstå skillnaderna mellan BigQuery-händelseexporten och Google Analytics-gränssnittet och se hur du kan minska dessa skillnader när det är möjligt kan du läsa Överbrygga klyftan mellan Google Analytics-gränssnittet och BigQuery Export.

Löpande export

Du kan välja alternativet för löpande export när du länkar din Google Analytics 4-egendom till BigQuery.

Med löpande BigQuery-export får du data om innevarande dag inom några minuter via BigQuery Export.

När du använder detta exportalternativ får BigQuery mer aktuell information om dina användare och deras trafik på din egendom som du kan analysera.

Med löpande export skapas en ny tabell varje dag:

  • events_intraday_YYYYMMDD: En intern provkörningstabell med sessionsposter som ägde rum under dagen. Streaming av exporter sker efter bästa förmåga och inkluderar eventuellt inte all data av orsaker som exempelvis bearbetning av sena händelser och/eller misslyckade uppladdningar. Data exporteras kontinuerligt under dagen. Den här tabellen kan innehålla poster om en session när sessionen sträcker sig över flera exporter. Tabellen raderas när events_YYYYMMDD har slutförts.

Om du väljer det dagliga alternativet när du konfigurerar BigQuery Export skapas även följande tabell varje dag.

  • events_YYYYMMDD: den fullständiga dagliga exporten av händelser

Sök efter information i events_ÅÅÅÅMMDD snarare än i events_intraday_ÅÅÅÅMMDD så att du söker i ett stabilt dataset för den dagen.

Mer information om tabellerna events_ÅÅÅÅMMDD och events_intraday_ÅÅÅÅMMDD finns i BigQuery Export-schemat.

Den löpande BigQuery-exporten innehåller inte följande attributionsdata för nya användare:

  • traffic_source.name (rapportdimension: Användarkampanj)
  • traffic_source.source (rapportdimension: Användarkälla)
  • traffic_source.medium (rapportdimension: Användarmedium)

Data om användarattribution för befintliga användare tas med, men det tar cirka 24 timmar innan informationen har bearbetats i sin helhet. Vi rekommenderar därför att du inte förlitar dig på uppgifterna från den löpande exporten utan i stället hämtar användarattributionsdata från den fullständiga dagliga exporten.

Du debiteras en extra BigQuery-kostnad på 0,05 dollar per gigabyte data för löpande exporter. En gigabyte motsvarar cirka 600 000 Google Analytics-händelser, även om siffran varierar beroende på händelsevolymen. Läs mer om BigQuery-priser.

Uppdaterad daglig export

Nu kan du utöver Daglig och löpande export välja alternativet Uppdaterad daglig export. Uppdaterad daglig export är för närvarande tillgängligt för Analytics 360-egendomar. Vart och ett av de tre exportalternativen kan aktiveras oberoende av varandra.

Om du vill konfigurera Uppdaterad daglig export måste du ha konfigurerat fakturering på Google Cloud Platform. Läs mer om uppdaterad daglig export till BigQuery (GA360).

Schema för tabelluppdateringar

Uppdateringar av tabeller som skapas som en del av BigQuery Export styrs av tidszonen för den Analytics-egendom från vilken data exporteras. Om egendomens tidszon ändras påverkas BigQuery-exporten, vilket kan leda till dataavvikelser eller att den dagliga exporten hoppas över.

Tabeller för löpande export (events_intraday_ÅÅÅÅMMDD) uppdateras kontinuerligt under dagen (t.ex. från kl. 12.00 till 23.59.59 i egendomens tidszon). När en ny dag börjar i egendomens tidszon skrivs händelserna till en ny tabell för data under dagen.

Dagliga exporttabeller (events_ÅÅÅÅMMDD) skapas efter att Analytics har samlat in alla dagens händelser. Analytics uppdaterar dagliga tabeller upp till 72 timmar efter datumet i tabellen med händelser som tidsstämplas med datumet i tabellen, till exempel händelsepaket som inkommer sent från Measurement Protocol eller Firebase-SDK:erna. Om datumet i tabellen exempelvis är 20220101 uppdaterar Analytics tabellen till och med 20220104 med händelser som har tidsstämpeln 20220101.

Ibland kan Analytics uppdatera dagliga tabeller efter 72 timmar i situationer då Analytics måste bearbeta tidigare data (till exempel vid en felkorrigering av ett bearbetningsfel).

Pingar utan cookies och data som tillhandahålls av kunden

När samtyckesläget har implementerats ingår pingar utan cookies som samlats in av Analytics i BigQuery-exporten, tillsammans med data som tillhandahålls av kunden, som user_id och anpassade dimensioner.

Återfylla dimensioner för trafikkällor med statusen Inte tillgänglig

Du kan använda följande resurser för att söka efter dimensioner för attribuerade trafikkällor för en specifik GCLID. Observera att wBRAID- och gBRAID-id:n inte ingår i BigQuery-exporten.

  • Google Ads API
  • Google Ads-skript
  • BigQuery-dataöverföringstjänsten för Google Ads

Du hittar GCLID för poster med statusen Inte tillgänglig i kolumnen traffic_source genom att söka efter GCLID-fältet i kolumnen collected_traffic_source. Mer information om hur du söker efter kampanjinformation i Google Ads utifrån en specifik GCLID finns i servicenivåavtalet för BigQuery Export.

GA4 – Firebase-integrering och BigQuery

Om en GA4-egendom och ett Firebase-projekt är integrerade kan de inte länkas till separata BigQuery-projekt.

Jämföra BigQuery Export i Google Analytics 4 och Universal Analytics

Google Analytics 4 Universal Analytics

Tillgängligt för Standard (utan kostnad) och 360 (betald)

Gräns i Standard: en miljon händelser per dag

Gräns i 360: miljarder händelser per dag

Tillgänglig för 360 (betald)

Kostnad

Gratis export till BigQuery-sandlåda inom sandlådans gränser

Exporterad data som överskrider sandlådans gränser medför avgifter enligt avtalets villkor

Kostnad

Gratis export till BigQuery-sandlåda inom sandlådans gränser

Exporterad data som överskrider sandlådans gränser medför avgifter enligt avtalets villkor

Konfigurering

Kan omfatta specifika dataflöden och utesluta specifika händelser för varje egendom

(du kan styra exportvolym och kostnad)

Konfigurering

Kan länka en vy per egendom

(exporterar all data till denna vy)

Löpande export

0,05 USD per GB (läs mer om BigQuery-priser)

Skapad tabell:

events_intraday_YYYYMMDD

Tabellen raderas varje dag:

  • om du även använder alternativet för daglig export utöver streaming
  • när den dagliga tabellen är slutförd

Omfattar inte data för Användarens kampanj, Användarens källa eller Användarens medium för nya användare

Löpande export

0,05 USD per GB (läs mer om BigQuery-priser)

Skapad tabell:

ga_realtime_sessions_YYYYMMDD

BigQuery-vy skapades:

ga_realtime_sessions_view_YYYYMMDD

Daglig export

Skapad tabell:

events_YYYYMMDD

Daglig export

Skapade tabeller

ga_sessions_intraday_YYYYMMDD

  • Uppdateras minst tre gånger om dagen
  • Varje uppdatering skriver över tidigare data
  • Raderas när den fullständiga importen från efterföljande dag är klar

ga_sessions_YYYYMMDD

  • Fullständig daglig import

Uppdaterad daglig export

Tillgängligt för 360-egendomar i storlekarna Normal och Large

Läs mer om bearbetningsskillnader mellan daglig export och uppdaterad daglig export.

Inte tillämpligt

Export, allmänt

Återfyllning: ingen återfyllning

Dataset: ett dataset med namnet analytics_<egendoms-id> för varje länkad egendom

Om du har implementerat samtyckesläget inkluderar exporten följande:

  • pingar utan cookies
  • data som tillhandahålls av kund (user_id, anpassade dimensioner)

Export, allmänt

Återfyllning: 13 månaders dataåterfyllning eller tio miljarder träffar vid länkning, beroende på vilket som är minst

(Återfyllning till BigQuery-sandlådan kan misslyckas)

Dataset: för varje länkad vy visas ett dataset med samma namn

Exportschema

GA4 exporterar endast trafikkällan som först förvärvade användaren

Har inte stöd för UA-data som exporteras till BigQuery

Varje rad i en BigQuery-tabell motsvarar en händelse

Händelsedata som är unik för Google Analytics 4

Vissa av fälten i Google Analytics 4 är i princip identiska med fälten i Universal Analytics (t.ex. device.category och device.deviceCategory), men det finns ändå fler skillnader än likheter mellan händelsedata i GA4 och träffdata i UA

Exportschema

Attribution på sessionsnivå över flera kontaktpunkter

Varje rad i en BigQuery-tabell motsvarar en session

Träffdata som är unik för Universal Analytics

Vissa av fälten i Universal Analytics är i princip identiska med fälten i Google Analytics 4 (t.ex. device.deviceCategory och device.category), men det finns ändå fler skillnader än likheter mellan träffdata i UA och händelsedata i GA4.

Relaterade resurser

I utvecklarhandboken för BigQuery hittar du mer information om

Var det här till hjälp?

Hur kan vi förbättra den?
Sök
Rensa sökning
Stäng sökrutan
Huvudmeny
14367894080398799802
true
Sök i hjälpcentret
true
true
true
true
true
69256
false
false