本文介绍的是 Google Analytics(分析)4 媒体资源。如果您仍在使用 Universal Analytics 媒体资源,请参阅 Universal Analytics 部分,这些媒体资源将于 2023 年 7 月 1 日起停止处理数据(Analytics 360 媒体资源将从 2023 年 10 月 1 日起停止)。

[GA4] 预测性指标

预测性指标简介

Google Analytics(分析)会利用 Google 机器学习专业知识处理您的数据集,以自动充实您的数据,从而预测用户未来的行为。借助预测性指标,您只需收集结构化事件数据便可进一步了解自己的客户。

指标 定义
购买几率

过去 28 天处于活跃状态的用户在未来 7 天内完成特定转化事件的概率。

用户流失概率

过去 7 天在您应用或网站上处于活跃状态的用户在未来 7 天内处于非活跃状态的概率。

预测收入

过去 28 天处于活跃状态的用户在未来 28 天内的所有购买转化操作预计可带来的收入。

 

目前,购买几率指标和收入预测指标仅支持 purchase/ecommerce_purchasein_app_purchase 事件。

尽管系统会继续处理 ecommerce_purchase 事件,但目前还是建议您改为收集 purchase 事件。

前提条件

为了保证 Google Analytics(分析)成功训练预测模型,需要满足以下条件:

  1. 购买用户和流失用户的正/负例数量达到最低要求。在过去 28 天内,触发以及未触发相关预测条件(购买或流失)的回访用户必须在 7 天内各自达到至少 1,000 人。
  2. 模型质量必须稳定保持一段时间,才算符合条件。
  3. 为了能够使用购买几率指标和预计收入指标,媒体资源必须发送 purchase推荐收集)和/或 in_app_purchase自动收集)事件。在收集 purchase 事件时,您还需要收集该事件的 valuecurrency 参数。欢迎了解详情

系统会为每个活跃用户生成各个合格模型的预测性指标,每天一次。如果媒体资源的模型质量未达到最低阈值,Google Analytics(分析)将停止更新对应预测,并且您可能无法在 Google Analytics(分析)中使用这类指标。

您可以转到受众群体构建工具,在建议受众群体模板的“预测”部分中查看各项预测是否满足条件。

使用预测性指标

您可以在受众群体构建工具“探索”功能中使用预测性指标。

受众群体构建工具

预测性指标可用于在受众群体构建工具中创建预测性受众群体

探索

您可以在“探索”功能的用户生命周期分析法中使用“购买几率”和“用户流失概率”。

最佳做法

数据共享设置中,启用基准化分析设置。启用此设置对您有利,因为 Google Analytics(分析)可以使用共享的汇总匿名数据来提升模型质量和预测效果。

务必充分利用媒体资源中的推荐的事件

请务必收集 purchase 和/或 in_app_purchase 事件。系统会自动收集 in_app_purchase 事件。不过,如果您有 Android 应用,就必须通过 Firebase 帐号关联到 Google Play,才能看到 in_app_purchase 事件。请注意,尽管系统会继续处理 ecommerce_purchase 事件,但目前还是建议您改为收集 purchase 事件。

如果您定义自定义受众群体并添加预测条件,以使用应用内购买概率购买几率指标,那么只有同时完成 purchasein_app_purchase 的用户才会被纳入受众群体。

系统收集到与用户行为所对应推荐事件的种类或数量越多,就越有助于提升模型质量和预测效果。同样,尽可能减少收集对用户行为没有意义的杂乱事件也有助于提升预测效果。

该内容对您有帮助吗?
您有什么改进建议?
搜索
清除搜索查询
关闭搜索框
Google 应用
主菜单
搜索支持中心
true
69256
false
false