In diesem Artikel geht es um Google Analytics 4-Properties. Wenn Sie noch eine Universal Analytics-Property verwenden, lesen Sie den Abschnitt zu Universal Analytics. In diesen Properties werden ab 1. Juli 2023 keine Daten mehr verarbeitet (1. Juli 2024 für Analytics 360-Properties).

[GA4] BigQuery Export

 

BigQuery ist ein Cloud Data Warehouse, mit dem sich schnelle Abfragen großer Datasets ausführen lassen.

Sie können alle Rohereignisse aus Ihren Google Analytics 4-Properties in BigQuery exportieren und diese Daten dann mit einer SQL-ähnlichen Syntax abfragen. In BigQuery können Sie die Daten in einen externen Speicher exportieren oder externe Daten importieren, um sie mit den Analytics-Daten zu kombinieren.

Wenn Sie Daten nach BigQuery exportieren, sind Sie der Inhaber der Daten und haben die Möglichkeit, die Berechtigungen für Projekte und Datasets mithilfe von BigQuery-ACLs zu verwalten.

Die Daten werden einmal täglich komplett und außerdem den ganzen Tag über fortlaufend exportiert (siehe Streaming-Export unten).

Sie können in eine kostenlose Instanz von BigQuery (BigQuery-Sandbox) exportieren, aber für Exporte, die die Sandbox-Limits überschreiten, fallen Gebühren an.

Bei Standard-Properties gilt ein tägliches Limit für BigQuery Export von einer Million Ereignissen. Weitere Informationen zu anderen BigQuery Export-Limits

Streaming-Export

Sie können die Option für den Streaming-Export auswählen, wenn Sie Ihre Google Analytics 4-Property mit BigQuery verknüpfen.

Mit dem Streaming-Export können über BigQuery Export innerhalb weniger Minuten Daten für den laufenden Tag abgerufen werden.

Sie erhalten aktuelle, analysierbare Daten zu Ihren Nutzern und deren Zugriffen in Ihrer Property.

Für jeden Tag wird eine neue Tabelle erstellt:

  • events_intraday_YYYYMMDD: Das ist eine interne Staging-Tabelle, die Datensätze der Sitzungsaktivitäten an diesem Tag enthält. Im Streaming-Export sind unter Umständen nicht sämtliche Daten enthalten. Dazu zählen beispielsweise verspätete Ereignisse und/oder fehlgeschlagene Uploads. Die Daten werden den ganzen Tag über fortlaufend exportiert. Die Tabelle kann Datensätze einer Sitzung enthalten, wenn diese mehrere Exportvorgänge umfasst. Sie wird gelöscht, sobald events_JJJJMMTT vollständig ist.

Wenn Sie beim Einrichten von BigQuery Export die Option „Täglich“ auswählen, wird jeden Tag die folgende Tabelle erstellt.

  • events_YYYYMMDD: Enthält alle Ereignisse des Tages.

Für Abfragen wird events_JJJJMMTT anstelle von events_intraday_JJJJMMTT empfohlen, weil so auf ein stabiles Dataset für den Tag zurückgegriffen wird.

Weitere Informationen zu den Tabellen events_JJJJMMTT und events_intraday_JJJJMMTT finden Sie im Artikel [GA4] BigQuery Export-Schema.

Die folgenden Daten zur Nutzerattribution für neue Nutzer sind nicht im BigQuery-Streaming-Export enthalten:

  • traffic_source.name (Berichtsdimension: Nutzerkampagne)
  • traffic_source.source (Berichtsdimension: Nutzerquelle)
  • traffic_source.medium (Berichtsdimension: Nutzermedium)

Daten zur Nutzerattribution für vorhandene Nutzer sind enthalten, aber deren Verarbeitung dauert etwa 24 Stunden. Daher empfehlen wir, nicht die Daten aus dem Streaming-Export zu verwenden, sondern Daten aus dem umfassenden täglichen Export abzurufen.

Für den Streaming-Export fallen zusätzliche BigQuery-Kosten in Höhe von 0,05 $ pro Gigabyte an Daten an. 1 Gigabyte entspricht ungefähr 600.000 Google Analytics-Ereignissen, wobei diese Zahl je nach Ereignisgröße variieren kann. Weitere Informationen zu den BigQuery-Preisen.

Zeitplan für die Tabellenaktualisierung

Beim BigQuery Export erstellte Tabellen werden gemäß der Zeitzone der Analytics-Property aktualisiert, aus der Daten exportiert werden.

Streaming-Exporttabellen (events_intraday_YYYYMMDD) werden über den Tag hinweg fortlaufend aktualisiert, also von 00:00:00 bis 23:59:59 Uhr in der Zeitzone der Property. Sobald in der Zeitzone der Property ein neuer Tag beginnt, werden die Ereignisse in eine neue Tabelle mit Tagesverlaufsdaten geschrieben.

Tägliche Exporttabellen (events_YYYYMMDD) werden erstellt, nachdem in Analytics alle Ereignisse für den Tag erfasst wurden. In Analytics werden tägliche Tabellen bis zu 72 Stunden nach dem Datum der Tabelle mit Ereignissen aktualisiert, wobei das Datum der Tabelle als Zeitstempel verwendet wird. Dies ist etwa bei Ereignispaketen der Fall, die verspätet über das Measurement Protocol oder die Firebase SDKs gesendet werden. Wenn das Tabellendatum zum Beispiel „20220101“ lautet, wird die Tabelle in Analytics bis „20220104“ mit Ereignissen aktualisiert, die den Zeitstempel „20220101“ haben.

Gelegentlich kann Analytics die täglichen Tabellen zu einem beliebigen Zeitpunkt nach dem 72-Stunden-Zeitfenster aktualisieren, wenn Verlaufsdaten in Analytics noch einmal verarbeitet werden müssen (z. B. für eine Fehlerkorrektur zur Behebung eines Verarbeitungsfehlers).

Pings ohne Cookies und von Kunden bereitgestellte Daten

Wenn der Einwilligungsmodus implementiert ist, sind von Analytics erfasste Pings ohne Cookies im BigQuery Export zusammen mit vom Kunden bereitgestellten Daten wie user_id und benutzerdefinierten Dimensionen enthalten.

 

BigQuery Export in Google Analytics 4 und Universal Analytics im Vergleich

Google Analytics 4 Universal Analytics

Verfügbar für Standard (kostenlos) und 360 (kostenpflichtig)

Standardlimit: 1 Million Ereignisse pro Tag

360-Limit: Milliarden von Ereignissen pro Tag

Verfügbar für 360 (kostenpflichtig)

Kosten

Kostenloser Export nach BigQuery-Sandbox im Rahmen der Sandbox-Limits

Für exportierte Daten, die die Sandbox-Limits überschreiten, fallen Kosten entsprechend der Vertragsbedingungen an

Kosten

Kostenloser Export nach BigQuery-Sandbox im Rahmen der Sandbox-Limits

Für exportierte Daten, die die Sandbox-Limits überschreiten, fallen Kosten entsprechend der Vertragsbedingungen an

Einrichtung

Spezifische Datenstreams einschließen und spezifische Ereignisse für einzelne Properties ausschließen

(zur Kontrolle von Exportvolumen und -kosten)

Einrichtung

1 Datenansicht pro Property verknüpfen

(alle Daten in dieser Ansicht werden exportiert)

Streaming-Export

0,05 $ pro GB (weitere Informationen zu BigQuery-Preisen)

Erstellte Tabelle:

events_intraday_JJJJMMTT

Die Tabelle wird am Tagesende gelöscht, wenn

  • Sie außer Streaming die Option für den täglichen Export nutzen.
  • die Tagestabelle voll ist.

Enthält keine Daten zu Nutzerkampagnen, Nutzerquellen oder Nutzermedium für neue Nutzer

Streaming-Export

0,05 $ pro GB (weitere Informationen zu BigQuery-Preisen)

Erstellte Tabelle:

ga_realtime_sessions_JJJJMMTT

Erstellte BigQuery-Datenansicht:

ga_realtime_sessions_view_JJJJMMTT

Täglicher Export

Erstellte Tabelle:

events_JJJJMMTT

Täglicher Export

Erstellte Tabellen:

ga_sessions_intraday_JJJJMMTT

  • Mindestens dreimal pro Tag aktualisiert
  • Beim Update werden vorherige Daten überschrieben
  • Wird gelöscht, wenn der vollständige Import des nächsten Tags abgeschlossen ist

ga_sessions_JJJJMMTT

  • Vollständiger täglicher Import

Export, allgemein

Backfill: kein Backfill

Dataset: für jede verknüpfte Property 1 Dataset mit dem Namen „analytics_<Property-ID>“

Wenn Sie den Einwilligungsmodus implementiert haben, beinhaltet der Export Folgendes:

  • Pings ohne Cookies
  • von Kunden bereitgestellte Daten (user_id, benutzerdefinierte Dimensionen)

Export, allgemein

Backfill: beim Verknüpfen Backfill von Daten aus 13 Monaten oder 10 Milliarden Treffern, je nachdem, welcher Wert kleiner ist

(Backfill in BigQuery-Sandbox nicht immer möglich)

Dataset: für jede verknüpfte Datenansicht 1 Dataset mit dem Namen der Datenansicht

Exportschema

Jede Zeile in einer BigQuery-Tabelle steht für ein Ereignis.

Nur in Google Analytics 4 verfügbare Ereignisdaten

Einige Google Analytics 4-Felder stimmen im Wesentlichen mit Universal Analytics-Feldern überein (z. B. „device.category“ und „device.deviceCategory“). Insgesamt gibt es aber mehr Unterschiede als Ähnlichkeiten zwischen GA4-Ereignisdaten und UA-Trefferdaten.

Exportschema

Jede Zeile in einer BigQuery-Tabelle steht für eine Sitzung.

Nur in Universal Analytics verfügbare Trefferdaten

Einige Universal Analytics-Felder stimmen im Wesentlichen mit Google Analytics 4-Feldern überein (z. B. „device.deviceCategory“ und „device.category“). Insgesamt gibt es aber mehr Unterschiede als Ähnlichkeiten zwischen UA-Trefferdaten und GA4-Ereignisdaten.

 

Weitere Informationen

Im BigQuery Developers Guide finden Sie Informationen zu:

War das hilfreich?
Wie können wir die Seite verbessern?

Benötigen Sie weitere Hilfe?

Anmelden, um weitere Supportoptionen zu erhalten und das Problem schnell zu beheben

Suche
Suche löschen
Suche schließen
Google-Apps
Hauptmenü
Suchen in der Hilfe
false
false
true
true
69256
false
false