Für die Attribution sind in Google Analytics 4-Properties erweiterte Attributionsfunktionen verfügbar. Dazu gehören der umgestaltete Bericht Conversion-Pfade sowie neue Attributionsfunktionen – beispielsweise Attributionsmodelle auf Property-Ebene. Dadurch erhalten Sie umfassendere Einblicke und können noch schneller und effizienter reagieren als bisher.
Themen in diesem ArtikelÜberblick über die Attributionsmodelle
Nutzer führen möglicherweise mehrere Suchanfragen durch und klicken auf verschiedene Anzeigen, bevor sie einen Kauf oder eine andere relevante Aktion auf Ihrer Website ausführen. Normalerweise wird der gesamte Wert einer Conversion der Anzeige zugeordnet, auf die zuletzt geklickt wurde. Aber war nur diese Anzeige ausschlaggebend für die Conversion? Was ist mit den anderen Anzeigen, auf die Nutzer vorher geklickt haben?
Mithilfe der Attribution lässt sich feststellen, inwieweit Anzeigen, Klicks und andere Faktoren im Conversion-Pfad des Nutzers zu einer Conversion beigetragen haben. Ein Attributionsmodell kann eine Regel, eine Gruppe von Regeln oder ein datengetriebener Algorithmus sein. Über das Modell wird festgelegt, wie Conversions den jeweiligen Touchpoints in Conversion-Pfaden zugeordnet werden.
In den Attributionsberichten in Google Analytics 4-Properties sind drei Attributionsmodelle verfügbar: datengetriebene Attribution, „Letzter Klick (bezahlte und organische Channels)“ und „Letzter Klick (bezahlte Google-Channels)“.
Klicken Sie links auf Werbung, um auf die Attributionsberichte zuzugreifen. Klicken Sie unter Attribution entweder auf Modellvergleich oder auf Conversion-Pfade.
- Bei allen Modellen werden direkte Besuche nicht bei der Attribution berücksichtigt (ihnen wird kein Beitrag zugeordnet), es sei denn, der Conversion-Pfad besteht ausschließlich aus solchen Besuchen.
Datengetriebene Attribution
Datengetrieben: Bei der datengetriebenen Attribution wird der Wert der Conversion anhand der Daten für die einzelnen Conversion-Ereignisse aufgeteilt. Der Unterschied zu den anderen Modellen liegt darin, dass hier anhand der Daten im Konto der tatsächliche Wert jedes Klicks berechnet wird.
Jedes datengetriebene Modell wird an den jeweiligen Werbetreibenden und das jeweilige Conversion-Ereignis angepasst.
Funktionsweise der datengetriebenen Attribution
Bei der Attribution werden Kaufpfade mit und ohne Conversion anhand von maschinellem Lernen analysiert. Das resultierende datengetriebene Modell lernt, wie sich unterschiedliche Touchpoints auf Conversion-Ergebnisse auswirken. Das Modell berücksichtigt Faktoren wie die Zeit bis zur Conversion, den Gerätetyp, die Anzahl der Anzeigeninteraktionen, die Reihenfolge der Anzeigenpräsenz und die Art der Creative-Assets. Im Rahmen einer kontrafaktischen Analyse werden die tatsächlichen den möglichen Ergebnissen gegenübergestellt, um die Touchpoints mit der höchsten Conversion-Wahrscheinlichkeit zu ermitteln. Das Modell ordnet diesen Touchpoints basierend auf dieser Wahrscheinlichkeit einen Beitrag zur Conversion zu.
Methodik der datengetriebenen Attribution (erweitert)
Die datengetriebene Attribution besteht im Wesentlichen aus zwei Phasen:
- Verfügbare Pfaddaten analysieren, um Modelle für die Conversion-Rate für jedes Ihrer Conversion-Ereignisse zu entwickeln
- Vorhersagen dieser Modelle als Eingabe für einen Algorithmus verwenden, der die Conversion den entsprechenden Anzeigeninteraktionen zuordnet
Modelle für die Conversion-Wahrscheinlichkeit auf Basis aller verfügbaren Pfaddaten erstellen
Bei der datengetriebenen Attribution werden Pfaddaten (einschließlich der Daten von Nutzern, die eine oder keine Conversion ausgeführt haben) verwendet. So erkennen Sie, wie sich bestimmte Marketing-Touchpoints auf die Conversion-Wahrscheinlichkeit der Nutzer auswirken können. Mit den daraus entstehenden Modellen wird bewertet, wie wahrscheinlich es ist, dass ein Nutzer an einem bestimmten Punkt im Conversion-Pfad eine Conversion durchführt, wenn er mit einer Anzeige auf eine bestimmte Weise interagieren soll.
Anhand der Modelle wird die Conversion-Wahrscheinlichkeit der Nutzer, die die Anzeige gesehen haben, mit der Conversion-Wahrscheinlichkeit ähnlicher Nutzer verglichen, die die Anzeige nicht gesehen haben. Es werden damit also die kontrafaktischen Leistungsverbesserungen durch die Präsenz von Google Anzeigen berechnet. Hierzu werden Daten aus randomisierten, kontrollierten Tests verwendet.
Conversions mithilfe eines Algorithmus den Marketing-Touchpoints anteilmäßig zuordnen
Beim datengetriebenen Attributionsmodell erfolgt die Zuordnung einer Conversion je nachdem, wie sich die geschätzte Conversion-Wahrscheinlichkeit ändert, wenn dem Pfad eine Anzeigeninteraktion hinzugefügt wird. Zur Berechnung dieser Zuordnung werden im Algorithmus unter anderem die Zeit zwischen der Anzeigeninteraktion und der Conversion sowie der Formattyp und andere Abfragesignale herangezogen.
Letzter Klick (bezahlte und organische Channels)
Letzter Klick (bezahlte und organische Channels): Direkte Zugriffe werden ignoriert und 100 % des Conversion-Werts dem letzten Channel zugeordnet, den der Nutzer vor der Conversion durch einen Klick (oder die aktive Wiedergabe auf YouTube) verwendet hat. Beispiele für die Zuordnung von Conversion-Werten:
- Displaynetzwerk > Soziale Netzwerke > Bezahlte Suche > Organische Suche → 100 % zur organischen Suche
- Displaynetzwerk > Soziale Netzwerke > Bezahlte Suche > E-Mail → 100 % zu E-Mail
- Displaynetzwerk > Soziale Netzwerke > Bezahlte Suche > Direkt → 100 % zur bezahlten Suche
- Letzter Klick (bezahlte und organische Channels) und Letzter indirekter Klick sind beides Namen für dasselbe Attributionsmodell.
In folgenden Fällen wird in der datengetriebenen Attribution eine aktive Wiedergabe gezählt:
- 30 Sekunden langes Ansehen einer Anzeige (bzw. Abspielen bis zum Ende, wenn sie kürzer als 30 Sekunden ist)
- Klick auf eine Teaser-Infokarte
- Klick auf ein Companion-Banner oder eine Videowand
- Klick auf eine Wortgruppe, die ein Call-to-Action ist
- Klick auf den Abspann
- Klick auf einen Link zur Website des Werbetreibenden
Letzter Klick (bezahlte Google-Channels)
Letzter Klick (bezahlte Google-Channels): Hier werden 100 % des Conversion-Werts dem letzten Google Ads-Channel zugeordnet, den der Nutzer vor der Conversion durch einen Klick verwendet hat. Wenn der Pfad keinen Google Ads-Klick enthält (siehe Beispiel 6), wird das Attributionsmodell auf „Letzter Klick (bezahlte und organische Channels)“ zurückgesetzt.
- Displaynetzwerk > Soziale Netzwerke > Bezahlte Suche > Organische Suche → 100 % zur bezahlten Suche
- Displaynetzwerk > Soziale Netzwerke > YouTube-Conversion nach aktiver Wiedergabe (Engaged-View Conversion, EVC) > E-Mail → 100 % zu YouTube
- Displaynetzwerk > Soziale Netzwerke > E-Mail > Direkt → 100 % zu E-Mail (Zurücksetzung auf das Modell „Letzter indirekter Klick“)
Attributionseinstellungen im Bereich „Verwaltung“
Nutzer mit der Rolle „Bearbeiter“ für die Property können jetzt ein Attributionsmodell und einen Conversion-Tracking-Zeitraum auf Property-Ebene auswählen und auf mehrere Berichte anwenden. Rufen Sie auf der Seite „Verwaltung“ unter Datenpräsentation die Attributionseinstellungen auf, um auf diese Optionen zuzugreifen. Weitere Informationen