- Więcej informacji o wymiarach i danych w Google Analytics 4 znajdziesz w artykule [GA4] Wymiary i dane Analytics.
- Informacje o zakresach wymiarów związanych ze źródłami wizyt w Google Analytics 4 znajdziesz w artykule [GA4] Zakresy wymiarów związanych ze źródłami wizyt.
Omówienie
Elementami składowymi każdego raportu w Google Analytics są wymiary i dane.
Wymiary to atrybuty danych. Na przykład wymiar Miasto wskazuje miasto, np. „Paryż” lub „Nowy Jork”, z którego pochodzi każda sesja. Wymiar Strona wskazuje natomiast adres URL wyświetlanej strony.
Dane to ilościowe wyniki pomiarów. Dane Sesja to łączna liczba sesji. Strony/sesja to średnia liczba stron wyświetlonych podczas jednej sesji.
Tabele w większości raportów Google Analytics dzielą wartości wymiarów na rzędy, a dane na kolumny. Na przykład poniższa tabela przedstawia jeden wymiar (Miasto) oraz dwa rodzaje danych (Sesja i Strony/sesja).
WYMIAR | DANE | DANE |
---|---|---|
Miasto | Sesje | Strony/sesja |
Warszawa | 5000 | 3,74 |
Berlin | 4000 | 4,55 |
W większości raportów Analytics można zmienić wymiar lub dodać drugi wymiar. Na przykład dodanie przeglądarki jako dodatkowego wymiaru do powyższej tabeli wyglądałoby następująco:
WYMIAR | WYMIAR | DANE | DANE |
---|---|---|---|
Miasto | Przeglądarka | Sesje | Strony/sesja |
Warszawa | Chrome | 3000 | 3,5 |
Warszawa | Firefox | 2000 | 4,1 |
Berlin | Chrome | 2000 | 5,5 |
Berlin | Safari | 1000 | 2,5 |
Berlin | Firefox | 1000 | 4,7 |
Prawidłowe kombinacje wymiarów i danych
Nie wszystkie dane można łączyć z dowolnym wymiarem. Poszczególne wymiary i dane mają swój zakres: poziom użytkownika, poziom sesji lub poziom działań. Najczęściej ma sens łączenie w raportach tylko tych wymiarów i danych, które należą do tego samego zakresu. Na przykład Sesja należy do danych związanych z sesją, więc można ją łączyć tylko z wymiarami sesji, jak Źródło czy Miasto. Łączenie danych Sesje z wymiarem dotyczącym działań, np. Strona, byłoby nielogiczne.
Lista prawidłowych połączeń wymiarów i danych jest dostępna w narzędziu UA Dimensions & Metrics Explorer.
Metoda obliczania danych
W Analytics dane o użytkownikach są obliczane na 2 podstawowe sposoby:
- Jako ogólne sumy
W tym przypadku wyświetlane dane stanowią sumy statystyk dla całej witryny, np. współczynnik odrzuceń czy łączna liczba odsłon. - W połączeniu z co najmniej jednym wymiarem raportowania
W tym przypadku o uwzględnianiu wartości danych decydują wybrane wymiary.
Na diagramie poniżej zilustrowano te 2 rodzaje obliczeń za pomocą prostego przykładu. Po lewej stronie widoczne są dane o użytkownikach obliczone jako ogólne sumy, a po prawej – te same dane obliczone przy zastosowaniu wymiaru Nowy użytkownik.
W przykładowym raporcie Ogółem obliczenie czasu spędzonego w witrynie polegało na określeniu różnicy czasu między rozpoczęciem sesji przez użytkownika a opuszczeniem przez niego witryny. Następnie wyciągnięto średnią z sumy długości czasu trwania wszystkich 3 sesji. Ta liczba została uzyskana poprzez wykonanie względnie prostych obliczeń na podstawie sygnatur czasowych dostępnych na poziomie żądania.
W przykładowym raporcie Nowi a powracający średnie nie zostały obliczone dla wszystkich sesji, ale otrzymane poprzez użycie wymiaru Typ użytkownika. Po powiązaniu danych Czas spędzony w witrynie z wymiarem można je analizować pod kątem porównywania nowych i powracających użytkowników, przy czym obliczenia są uzależnione od zastosowanego wymiaru. Użycie wymiaru umożliwia wgląd w zachowania użytkowników, jakiego nie zapewnia raport Ogółem: wyraźnie widać tu, że nowi użytkownicy spędzają w witrynie więcej czasu niż powracający.
Na obliczanie danych wpływa też użycie do nich więcej niż 1 wymiaru. Zarówno we wstępnie sformatowanych, jak i w niestandardowych raportach można stosować większą liczbę wymiarów naraz. Załóżmy np. że do analizowania czasu spędzonego w witrynie używasz jednocześnie wymiarów Typ użytkownika i Język. W tym przypadku wyniki obliczeń służących do porównywania nowych użytkowników z powracającymi będą identyczne, ale po zwiększeniu stopnia szczegółowości analizy poprzez sprawdzenie, jakim językiem posługują się nowi użytkownicy, następuje modyfikacja wyników ze względu na dodatkowy wymiar. Zestawienie użytkowników może więc np. wyglądać w podany niżej sposób, gdzie o kolejności decyduje czas spędzony w witrynie:
Typ użytkownika | Język | Średni czas spędzony w witrynie |
---|---|---|
Wszystkie typy | Wszystkie języki | 3:25 |
Powracający | Wszystkie języki | 5:03 |
Fiński | 29:49 | |
Wietnamski | 20:44 | |
Indonezyjski | 16:55 | |
Nowi | Wszystkie języki | 2:09 |
Malajski | 17:38 | |
Angielski (Wielka Brytania) | 16:56 | |
Chiński (tradycyjny) | 16:20 |
Liczby te podano na podstawie rzeczywistego raportu Analytics. W tym przypadku można ustalić, czy nowi, czy powracający użytkownicy spędzają więcej czasu w witrynie, oraz posługując się dodatkowym wymiarem, sprawdzić, dla których języków w każdej z tych kategorii odnotowano najdłuższy czas spędzony w witrynie.
Modele atrybucji
Analytics próbuje udzielać odpowiedzi na najrozmaitsze pytania dotyczące zachowań użytkowników, więc korzysta z różnych rodzajów obliczeń, czyli modeli atrybucji, by docierać do danych, które widzisz w raportach. Każdy raport Analytics można traktować jako odpowiedź na określonego rodzaju pytanie służące do analizy użytkowników. Pytania te zaliczają się często do odmiennych kategorii:
- Treść: Ile razy wyświetlano konkretną stronę?
- Cele: Które adresy URL stron miały udział w uzyskaniu najwyższego współczynnika konwersji celu?
- E-commerce: Jaką część wartości transakcji można przypisać danej stronie?
- Wyszukiwarka wewnętrzna: Jakie hasła wyszukiwane w wewnętrznej wyszukiwarce miały udział w transakcji?
W przypadku każdej z tych głównych kategorii i zawartych w nich raportów Analytics używa osobnego modelu atrybucji. Każdy model atrybucji służy do obliczania określonego zestawu danych, więc możesz zauważyć, że pewne dane, np. odsłony, w jednych raportach występują, a w innych – nie. Zależy to od modelu atrybucji stosowanego do generowania danego raportu.
W raportach Google Analytics używa się 3 modeli atrybucji:
Atrybucja z uwzględnieniem żądań
W ramach tego modelu zbiorcze wartości przypisane są pojedynczym danym lub połączeniom danych z wymiarami. Jest to najpowszechniejszy i najprostszy rodzaj atrybucji w Analytics, ponieważ wartości są określane na podstawie poszczególnych żądań GIF użytkowników. Dzięki temu w przypadku dowolnego żądania możliwe jest sprawdzanie określonego wymiaru lub konkretnych danych.
Większość wartości wymiarów jest dostępnych na poziomie żądania i pozostaje osiągalnych poprzez samo żądanie HTTP/GET
lub w żądaniu GIF. Jest tak w przypadku każdego skierowanego do witryny żądania dotyczącego strony lub zdarzenia. Typowe wymiary dostępne na poziomie żądaniaSome common dimensions available at the request level are:
- identyfikator URI strony – dostępny z każdym żądaniem napływającym do witryny, wskazuje ścieżkę, jaką docierano do danej strony;
- kampania – jeśli użytkownik trafia do witryny poprzez kampanię, zostaje ona trwale odnotowana w każdym późniejszym żądaniu aż do zmiany samej kampanii;
- klient użytkownika – każde żądanie użytkownika zawiera informacje o jego przeglądarce wysyłane z niej w żądaniach
HTTP/GET
i rejestrowane bezpośrednio w plikach dziennika.
Atrybucja na podstawie wartości strony
Ten rodzaj atrybucji służy odpowiedzi na pytanie: „Jak skuteczna była moja strona w odniesieniu do wartości celu lub przychodu?”. Ten model podaje Wartość strony w przypadku pojedynczej strony lub zestawu stron. Na ilustracji poniżej przedstawiono serię odsłon wywołanych przez użytkowników, które mogą prowadzić do celów i zakupów w witrynie.
Ten model atrybucji jest nazywany „prognostycznym”, ponieważ przypisuje stronie wartość na podstawie przewidywań celów i (lub) zakupów, które zostaną zrealizowane po odwiedzeniu strony. W poniższej tabeli podano wartości przypisane poszczególnym stronom w tej sekwencji.
Strona | Wartość celu/przychodu |
---|---|
P1 | 220 zł + cel 1 |
P2 | 220 zł + cel 1 |
P3 | 140 zł + cel 1 |
P4 | 0 zł |
Tego modelu atrybucji nie stosuje się w raportach Cele ani E-commerce, gdyż nie są w nich podawane identyfikatory URI stron ani tytuły w odniesieniu do działań e-commerce.
Atrybucja wyszukiwania w witrynie
Ten model atrybucji umożliwia podawanie w raportach Wyszukiwanie w witrynie współczynników konwersji i wartości celów dla poszczególnych wyszukiwanych haseł.
Ten model działa inaczej niż atrybucja na podstawie wartości strony, ponieważ wartość celu jest w nim przypisywana najbliższemu wyszukiwanemu hasłu prowadzącemu do konwersji, a nie do żadnych innych zdarzeń. Na poniższym diagramie przedstawiono sekwencję wyszukań w wewnętrznej wyszukiwarce razem z wyświetleniami stron i zakupami.
W ramach tego modelu do celu 1 i transakcji przypisane zostają następujące wyszukiwane hasła:
- Buty – 80 zł
- Kwiaty – 100 zł
W tym modelu transakcje lub cele są przypisywane wyszukiwanemu hasłu natychmiast po zrealizowaniu danego celu lub danej transakcji.